Target Driven Instance Detection

نویسندگان

  • Phil Ammirato
  • Cheng-Yang Fu
  • Mykhailo Shvets
  • Jana Kosecka
  • Alexander C. Berg
چکیده

While state-of-the-art general object detectors are getting better and better, there are not many systems specifically designed to take advantage of the instance detection problem. For many applications, such as household robotics, a system may need to recognize a few very specific instances at a time. Speed can be critical in these applications, as can the need to recognize previously unseen instances. We introduce a Target Driven Instance Detector(TDID), which modifies existing general object detectors for the instance recognition setting. TDID not only improves performance on instances seen during training, with a fast runtime, but is also able to generalize to detect novel instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-Instance Pruning For Learning Efficient Cascade Detectors

Cascade detectors have been shown to operate extremely rapidly, with high accuracy, and have important applications such as face detection. Driven by this success, cascade learning has been an area of active research in recent years. Nevertheless, there are still challenging technical problems during the training process of cascade detectors. In particular, determining the optimal target detect...

متن کامل

Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection

The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a mixture of both target and non-target signatures (i.e., subpixel targets), making extractin...

متن کامل

Multiple Instance Hyperspectral Target Characterization

In this paper, two methods for multiple instance target characterization, MI-SMF and MI-ACE, are presented. MISMF and MI-ACE estimate a discriminative target signature from imprecisely-labeled and mixed training data. In many applications, such as sub-pixel target detection in remotely-sensed hyperspectral imagery, accurate pixel-level labels on training data is often unavailable and infeasible...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

Electric Differential for an Electric Vehicle with Four Independent Driven Motors and Four Wheels Steering Ability Using Improved Fictitious Master Synchronization Strategy

Using an Electric Differential (ED) in electric vehicle has many advantages such as flexibility and direct torque control of the wheels during cornering and risky maneuvers. Despite its reported successes and advantages, the ED has several problems limits its applicability, for instance, an increment of control loops and an increase of computational effort. In this paper, an electric differenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010